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A. Statement of Problem Studied

Contract No. NIPR-ARO 124464 was a $35,000 grant to investigate methods
for improving one and two dimensional shock flow calculations by combining
several approaches such as mesh refinement and moving grids for optimal

accuracy and efficiency.

B. Summnary of Important Results

Extremely accurate shock flow results were obtained for standard one
dimensional model problems. Inviscid hydrodynamics are piecewise continuous;
derivatives at a discontinuity must be formed by appropriate one-sided
difference approximations consistent with-..calculus. Because the spatial
derivative at a discontinuity is unbounded, it can be made finite if the
discontinuity is sprend out using a consistent step function approximation,
for example, an arctan. The derivative with the discontinuity is a finite
approximation to a delta-function.

Second, a moving grid scheme was used. The grid velocity which Is
arbitrary is taken to be that velocity in which the set of dependent variables
appear steady in the least squares sense. At a shock, contact surface or
rarefaction, the grid velocity for each component was equal, but not
necessarily equal in each continuous subregion. Wave steepening drives mesh
points together and whenever the distance of closest approach fell below

0.0001 and the gradients in that region grew from successive time steps, a new
discontinuity was inserted. A conservative static rezoning scheme was used as

a post processor after every time step permitting grids to move without

constraints.

After extensive testing, it was found that the standard local three finite
difference scheme performed very poorly for derivative estimates In the

rarefaction region. However, when a global monotonic spline interpolation
* developed by Fritsch and Carlson was used, vastly improved accuracy was

obtained.
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Mesh refinement was used for interacting shock waves in conjunction with a

Riemann solver. The Riemann solver was used only to predict the outcome of a

wave interaction, not to advance the solution in time. Mesh points were

dynamically added to the computational domain for new shocks, contacts, and

rarefaction waves. It was thus possible to follow the interaction of shocks

with both step up and step-down contact interactions using a minimum number of

points extremely accurately.

Finally a two dimensional freely propagating shock was calculated using

the basic concepts developed in one-dimension. In 20, the components of the

grid velocity were found by rotation into the direction of the maximum

gradient, and a translation to a frame in which the dependent variables are

steady. Appropriate one sided differences were used at the shock. When

standard stencils could not be used at or near the shock, a second order

Taylor series on scattered data was used. The results for this problem were

excellent.

Because of the limited contract grant, no mathematical analysis was done.

The extension to the general case of 20 interacting shocks is unfinished, but

the essential building blocks have been obtained. A superior method for

differencing in two or three dimensions irregardless of a grid data structure

appears to be Hardy's (1] multiquadric interpolation (MQI) scheme.

MQI is a locally global interpolation scheme which uses upper hyperboloids

as basic functions. Franke (2] states that of all the methods he has tested

MQI is outstanding in accuracy, visual appearance, ease of use, and timing.

, t4QI is continuously differentiable permitting arbitrary data location without

the dispersion and dissipation truncation errors associated with local low

order interpolation based difference schemes. 4QI has the power and accuracy

of spectral methods without the restriction of a logically rectangular tensor

product formulation.

Whenever possible, the analysis of Ben-Dor and Glass [3] and NIrels [4]

will be used for the 2D regular and Mach reflection problem. However, the

synthesis of the various aspects has yet to be done, and will be postponed

until future funding.

° ~~~~~~~~~~~~~~~~~. ......... ....... ,.,..... =...... .. , .,....... . ....... ........ . -.... .-...... -....% ...- , ... ..
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Highly Accurate Shock Flow Calculations
with Hving Grids and Mesh Refinement*

Edward J. Kanoa
Lawrence Livermore National Laboratory

Earth Sciences Department. L-200
Post Office Box 805, Livermore, California 94550

Abstract

Five one-dimensional (ID) and one 2D shock wave The Novin Grid Scheme
problems which propagate obliquely to the coordinate axes
are solved by a second-order time-uarching method. The The approach taken in this paper is a modification
solution region is assumed to be piecewise continuous. of the simplified mowing finite difference (MFD) scheme
with any "discontinuities" which may develop being of Kansa et al. [21. In that scheme. the penalty func-
represented by an 4rccan approximation to a step func- tion approach for controlling grid notion was dropped in
tion. Iediately behind or ahead of a flagged "discon- favor of a time step control and a static regridding
tinuity", appropriate one-sided derivatives are used. scheme. The basic modification in this paper is that the
An explicit moving grid technique is combined with the grid velocities are part of an explicit time-integration
time-integration scheme which yields the correct velocity scheme.
at "discontinuities". Shock fitting is not only simply The conservation equations in a moving frame have the
handled, but it is handled automatically and correctly following form (relative to the fixed frame):
by the choice of the grid velocities. The regularIxation
problem associated with moving grids is handled by a re-
zoning based on equidistributing the component averaged -c -x " - a (G - v2 . 0,

third derivative. Because the approximate step-function (4)
and the above-sentioned rules for derivative formation dz/dt - vl, dy/dt * v2,
are mathematically consistent, artificial viscosity is
unnecessary. The same second-order time integration where the grid velocity, v, is arbitrary. In the absence
scheme is used throughout the entire spatial domain. For o re terms veach vD hs arbidelcy. fo thic

accurate physics of wave interactions, a nonlinear of sore torus, each PDE has a grid velocity for which

Riemnn solver is applied. In conjunction with the a specific component of U is stationary which is chosen

ftiemann solver, adaptive mesh refinement injects mesh by

,oints into the computational domain automatically to
define a post collision structure. vL a F x /Ux if IUl I 0; v2 - G /U if Iy ( 0. (5)

• The Time-Marching Scheme In special regions such as shocks, contact discontinui-

ties, and rarefaction waves, all the component grid
For brevity, the reader is referred to Richtmeyer and velocities are equal. For the convenience of dealing

Horton [1] for details. The two-dimensional conservation with a common grid, a comon grid velocity was deter-
law form of the fluid-dynamic equations is mined for the general case by requiring the entire set

of dependent variables at a given location be stationary
t * x * y , (1) in the least-squares sense, (2]. The time-integration

schems, Eq. (3). is the esm, except that the A-matrix
where the subscripts t. x, and y denote partial derive- is now replaced by ! - vq, and L is replaced by F - vU.

- tives. The fluxes F and C are related to the conserve- In two dimensions. a rotation is performed which maximizes
- tive variables U in the following smanner: gradients along the prime coordinate, a*. Then a trans-

" lation frame is sought in which U is stationary using Eq.
E " y y (2) (5).

where A and B are the appropriate Jacobians. Continuous Approximations of Discontinuities

However. the matrix representation of the Jacobians Korn and Korn (31 have presented several approximate
can be ambiguous regarding the nonlinear matrix elements, functions for the satp function. The choice used in this

* The following procedure vas used to guarantee rigorous paper approximates a step-function by the arctan function,
*. equality. Given F . U x, Cy and Uy as known quantities,

the unknown nonlinear matrix elements of the Jacobians, f(x) - Y + (r fi)/arctan(s(x-xo0 )]/
' A and 3 are solved. 2 (6a)

The solution U, at the now time tndl is given by a and a U k/(xr - xi) for x in [Ie, xr] and where Er and
second order Taylor series expansion as Eg are the endpoint values of the discontinuity, xo is

the midpoint of the discontinuity, and s is the spreading
U - U(n) - dt ( C parameter. Here the subscripts r and t refer to the right

U(nY) - x - (ahead) and left (behind) of a discontinuity moving to the
(3) right. 1n the limit of a going to infinity as (xr - x)

+I tfdt dt' {([A(F + G )I + [MF + GI goes to Oro, f(x) become true step function.
- -Y -- x -y Three mesh points are sufficient to represent a

"discontinuity": the two endpoints and the midpoint.
Successive differentation of Eq. (6.a) yields the
following midpoint derivatives:

• Work performed under the auspices of the U.S. Depart- f'(x o ) S (
1
r /L) 5/W ,f"(x 0 ) - 0 (6b)

meat of EnerJy by the Lawrence Livermore National Labor&-
- tory under contract No. W-7405-ENG-48 and partially At the endpoints, the rules of calculus for piecewise

supported by the Army Research Office contract No. continuous functions (see Korn and Korn [31) are used to
HIPR-AkO 124-8.-. determine the derivatives at either side of a

discontinuity.
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V'(a ) " fl(x-); f"(x ) - f"(x) (6) the total number of grid points, the number of gridI Ipoints can be dynamically increased or decreased after

f'(x). f"(x )- the post collision states are determined.

r I r r Presentation of Rasults

Note that at the endpoints of a rarefaction fan, the liz example problema are presented. These are: the
function is continuous, but the derivatives are not. Eq.
(6c) and (6d) are used at the appropriate locations. Neumann shock bube problem in cartmsan geomety. the an

Each component of F and U is fitted by its own step bleat ve problm of Noh (61, and the shock tube pro

function at a "dicontjnuityW. The grid velocity is

found by using the appropriate flux and dependent vari- ble involvin an interacting shock with a step-down and
able derivatives, Eq. (6b) in Eq. (5). The entire "die- a step-up contact discontinuity. The last example is an

infinite planar two-dimensional shock propagating
continuity" fro x to xr moves at the grid vei- obliquely to the coordinate axo.
city. Since one can store the appropriate derivatives. All example calculations wer solved in dimensionless
the same time-marching scheme, Eq. (3), can be used form. The solutions have multiple time and length scales
everywhere except at the boundary. Numerical experimen- which evolve in time. The reference length scale is the
tation has shown that in a moving frme, the first and distance from the origin at the left to the far right
second order terms of Eq. (3) are identically zero where boundary, scaled to unity. The reference time scale is
the step function approximation is used. Using Eq. (6) the reference length scale divided by the initial maximum
in Eq. (3) and Eq. (4) requires no artificial dissipa- tpe relatie o th e iia lenth sclthe shock
tion. Shock fitting is automatically and correctly hpefd. Relative to the initial length scale, the hock

handled by this choice of moving grid velocities. half width is arbitrarily chosen to be 10
Becase "discontinuities", corners of rarefaction The first case to be considered is the Rieaunn shockfans, end boundaries are flagged, ay shock flow can be tube problem which was previously calculated by Sod (71

partitioned into several distinct piecewise continuous and Marten and lymen [8] with the initial discontinuity
subregions bounded by flagged and or boundary points, at x a 1/2. At t " 0. a Riemaun solver was used toGrid motion in the subregion can be controlled by initialize the solution at a time step At, on the do-
i i e iomin 10.11. A rarefaction wave propagates backwards

equipartitioning the component averaged third derivative, while a shock, followed by a contact surface, propagates
maintaining minimum spacing and well ordering of points, forward, This system has an analytic self-similar solu-
see 12). The remapping is totally conservative because tion. The shock and contact surface propagate forward at
the integral of the old partition is forced to equal the constant velocities. The rarefaction fan propagates
integral of the new partition. In some circumstances, backwards along the local u-a characteristic, where u and
new discontinuities tend to develop, a are the local particle and sound velocities.

The nonlinear convective terms of the governing PDE's figure I shows the numerical solution for the density
permit steepening and eventual discontinuity formation. of y , 1.4 gas at t a 0.25. The diamonds in these
In a moving grid scheme, this phenomenon has been docu- figures and all subsequent figures represent the actual
mented (see [2 and 41). Given the current time step,. solution t the indicated nodal position. Note that be-
grid positions, and velocities, a search is made within s the ndcate noal psition. ot e e
a piecewise continuous region to determine whether grid cause the conservative vnriables (s Eq. 2) were used,
points would come within a separation of 10'4 or closer the gas velocity and pressure at a discontinuity may not

* in the next time cycle, and if gradients are becoming necessarily be the midpoint values.
very large. If so, a "discontinuity" defined by three The second problem attempted was the von Neumann [51y s . infinite shock, spherical blast wave problem. Ahead of
points, e (, inserted into the computatiol the shock, p - u - 0 and 0 1 I. The pressure behind
domain, and another flag is set. the shock at radius, r a 1, was specified to be 100. A

In this paper, a nonlinear I-D 3iemann solver is used special routine was used to initialize the solution be-
to specify the physics of wave collisions. The Riomann hind the shock.
solver is not used in any variations of the Gudunov From the analysis of Zel'dovich et &1. (91 and

"*" scheme to time advance the solution. Therefore, it isF
* instructive to outline the use of the liemsnn solver in Thompson (101, the following relations can be obtained

- specifying the resulting physics after waves collide, for a y - 5/3 gas in terms of new variables:

such as shocks with rigid walls, geometric sym etry P
points, shocks with other shocks or contact surfaces, - 4 0, u 0 (r/t) 4, p a (r/t)p. (7)
etc.

The Riemann solver will produce one of five possible Using the above relations in a and E as well as the
middle state configurations depending upon input left fluxes, the following relation was observed:
and right state densities, velocities and pressures, 2 2
located at Xt and Xr. They are: (1) middle vacuum Ut  (l/t)(llr )(r F) = 0. (8)
state, (2) a left and right rarefaction, (3) a left shock r
and right rarefaction, (4) a left and right shock, and because of the (l/t) multiplying the flux transport terms,

" (5) a left rarefaction and a right shock. If the middle the integrating factor of Eq. (3) is Ln(t).
left and middle right densities are unequal then a den- The results for pressure are shown in Fig. 2 at two
sity discontinuity exists. Discontinuities and rarefac- different times. In the moving frame, only density is
tions are flagged. self-similar. The velocity and pressure profiles decay.

Before advancing the solution and grid position to a The Ln(t) integrating factor gives the correct temporal
new time, a search is made of all neighboring "discon- behavior without unnecessarily small time steps.

% tinuities" using the relative separations and velocities The next problem to be discussed is Noh's (61 spheri-
. to determine whether a wave collision is possible during cally divergent shock problem. At time t - 0, a y a 5/3

the current time interval. If some collisions are gas at zero pressure, density of one, converges within
possible, then the minimum collision time interval is a sphere at a gas velocity of -1. Then at the center, a
found, and as a precaution, it is multiplied by 0.5. shock develops with a density of 64, gas velocity of zero,

If the separation of two existing waves is less than and pressure of 64/3 moving outwards at a shock velocity
or equal to t, where c is arbitrarily chosen to be 10-, of 1/3. Noh's challenge is to run the problem to a time
then the time interval to complete collision, At1, can be of t - 0.6.

* calculated. Then the Riemann solver yields new states In order to solve the shock state due to the focusing
with new wave speeds. New discontinuities and rarefac- of gas at the origin, the liemann solver must be modified
tions are flagged. The time interval, At2 , to the $se for infinite shocks and cylindrical and spherical geome-
separation can be calculated as well as the location try. As soon as the gas moves inward, it is adiabatically
within that separation of all the intermediate waves compressed by the spherical focusing. Since the initial

" using the now wave velocities. Rather than fixing pressure is zero, the subsequent pressure profile inward,
-2- but not at the origin is also zero. The inward gas motion
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is self-similar with a constant gas velocity of u -1, The last problem is a demonstration that this moving

and the mass conservation equation can be integrated to grid scheme does indeed extend to higher dimensions. On

yield a unit square, an infinite shock propagates obliquely to

the coordinate xe. To the left of the shock for a
= 
(1 * t/r)

2  (8) -- 5/3 ideal gas, p a 4/3, o - 4, u v - 0; to the

for r>o right of the shock, p - 0, 0 , u = -1, v - 5/8.

The initial pressure profile is shown in Figure 8.
rich the boundary condition Two grids were used. An underlying coarse grid was

used with Ax a 1/6 and %y - 1/S. The shock region

r " -t, at a 1 is defined on a mesh of length 7-11 grid points in the

tangential direction and a width of 3 msh points of

Because of spherical symetry, the gas velocity must total extent l0-4 in the normal direction. A two

be zero at the origin. Using the notation that the sub- dimensional extension of a second order time marching

scripts t and r refer to the left and right states ahead scheme was used throughout the domain, except at the

of the shock, and a to the new middle shock state, the boundaries which were open. At the shock, a rotation was

known quantities are us , Pt - Pr - 0; ur - -1, ut -1. performed into the normal direction, and then a transla-

The unknown quantities are P., On USr I -uSL, and 
0

r - P1 tional frame was found in which the conservative depen-

Following Courant et al. [1ll, one finds for a y " 5/3 as dent variables were steady. The pressure profiles at t

that or - 16, On - 64, usr " 1/3, and ps - 64/3. Fig. 3 a 0 and t - 0.56 are shown. Note that the shock remains

is the density calculated to t - 0.6. Note that the sharp. These calculations were run at a CFL number of

density has developed a new contact surface at the tail 200. Figure 9 shows these results.
before it abruptly drops to unity. This discontinuity The future plans are to incorporate the two dimen-
was inserted as discussed previously. sional shock interaction analysis of Courant Ill.

The next problem in slab geometry is adapted from Because of the network of shock interactions, i.e.,
Harlow and Amoden [121. At t - 0, an incoming gas of triple points, bubbles, etc. expected to arise from two

velocity u = -1, p - 0 hits a rigid wall located at x = 0. dimensional interacting shocks, a rectangular mesh may
The initial gas density is 2 for x < 1/2 and unity for become too cumbersome and scattered data interpolation
1/2 < x 1 1. The Ki&aann solver produces an outgoing schemes might be most useful.
shock moving at a velocity of 1/3 

and an incoming contact

discontinuity moving ac a velocity of -1. Figure 4 shows References
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* These calculations were extended at will without any
* evidence of difficulty. The calculations were arbitrarily

stopped at t - 0.805. No instabilities have occurred .6
because accurate solutions from the Riesmann solver wore
used to define the collision states, a moving grid scheme
was used, and a mathematicslly-consistent approximate
step function was used without artificial viscosity. In 4

this particular calculation, no CFL time restrictions
were necessary since the first and second order time
corrections (see Eq. 9.b) were identically zero. The .2
time scale estimate used is t - IIUl1/I IV*F - V'l . -
When the denominator vanishes, the time scale is arbi-

crarily large, however, the usual CFL condition is
recovered when the grid motion is turned off. o. . .4 1 .6

. ... . .. . ..
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